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Whereas Large Eddy Simulation (LES) of single-phase flows is already widely used in the CFD world, even
for industrial applications, LES of two-phase interfacial flows, i.e. two-phase flows where an interface
separates liquid and gas phases, still remains a challenging task. The main issue is the development of
subgrid scale models well suited for two-phase interfacial flows. The aim of this work is to generate a
detailed data base from direct numerical simulation (DNS) of two-phase interfacial flows in order to
clearly understand interactions between small turbulent scales and the interface separating the two

f\(:l)l' lvtviorlf;e flow phases. This work is a first contribution in the study of the interface/turbulence interaction in the config-
Turbulience uration where the interface is widely deformed and where both phases are resolved by DNS. To do this,

the interaction between an initially plane interface and a freely decaying homogeneous isotropic turbu-
lence (HIT) is studied. The densities and viscosities are the same for both phases in order to focus on the
effect of the surface tension coefficient. Comparisons with existing theories built on wall-bounded or
free-surface turbulence are carried out. To understand energy transfers between the interfacial energy
and the turbulent one, PDFs of the droplet sizes distribution are calculated. An energy budget is carried
out and turbulent statistics are performed including the distance to the interface as a parameter. A spec-
tral analysis is achieved to highlight the energy transfer between turbulent scales of different sizes. The
originality of this work is the study of the interface/turbulence interactions in the case of a widely

deformed interface evolving in a turbulent flow.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Direct numerical simulations (DNS) of interface/turbulence
interaction are relatively recent (Lam and Banerjee, 1988; Lam
and Banerjee, 1992) and generally limited to plane free-surface
configurations where the effect of the gas phase on the liquid is ne-
glected and replaced by the free plane surface approximation some-
times in combination with an enforced shear force. Free surface
turbulence in an open channel flow was first studied by Lam and
Banerjee (1988), Lam and Banerjee (1992). Lombardi et al. (1996)
performed a DNS of counter-current gas-liquid flow in a channel
using free-slip boundary conditions at both channel walls. The
interface between the two phases was maintained flat which corre-
sponds to a very high surface tension. It was found that turbulence
characteristics on the gas side are similar to those at the near wall,
and that the lighter phase might seem like a solid surface at the
interface. Later, Handler et al. (1993) conducted similar DNS In
these simulations, the free surface was supposed to be a rigid
free-slip wall and the vertical movement of the free surface was ne-
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glected. The full free surface boundary conditions were integrated
in the work of Komori et al. (1993). But this work was still restricted
to small-amplitude surface deformations. A model of wind-gener-
ated surface waves was proposed by Borue et al. (1995) by studying
the influence of enforced stresses at the free surface. Non-flat inter-
faces were investigated by De Angelis (1998) by considering strat-
ified flows with a freely deformable interface in the capillary
wave regime. Fulgosi et al. (2003) performed DNS of turbulence
in a counter-current air-water flow configuration separated by a
deformable interface. The results of this work did not differ very
much from the previous investigation (Lombardi et al., 1996). Tur-
bulence intensities, budgets for the Reynolds stresses and flow
structures on the gas side showed similarities with results issued
from an open channel flow. In Banerjee et al. (2004), friction veloc-
ities were considerably increased so as to generate surface defor-
mations of higher waveslopes, without leading to wave breaking,.
It was found (Banerjee et al., 2004) that when the shear rate im-
posed by the gas is high, turbulence is generated in the vicinity of
the interface, like near solid boundaries. In Lakehal et al. (2005),
the DNS of the stratified gas-liquid flow over a sheared interface
concluded in the necessity to accomodate the asymptotic behaviour
of turbulence near interfaces (like in wall flows). The first damping
function for near-interface turbulence from the gas side was
derived (Lakehal et al., 2005). In all these studies, the interface
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deformation is supposed to be moderated excluding strong topo-
logical changes such as fragmentation or wave breaking.

More recently, work has been done taking into account frag-
mentation or break-up in the DNS context of two-phase separated
flows. Indeed, Bunner and Tryggvason (2003) have studied the ef-
fect of bubble deformation on the properties of turbulent bubbly
flows. In their simulations, turbulence was produced by the wake
of bubbles. The so-called pseudo-turbulence induced by a bubble
swarm does not have the same properties as a well developed tur-
bulence whose energy spectrum contains an inertial zone. Few
DNS studies of deformable bubbles have been carried out in turbu-
lent channel flows. Among them, in Kawamura and Kodama
(2002), DNS of a fully developed turbulent channel flow containing
deformed bubbles are performed. A front-tracking method is used
to capture the interface. Modifications in the profiles of turbulence
intensities were observed. In Liovic and Lakehal (2007a) a LES for-
mulation has been applied to a turbulent bubbling process driven
by a constant volume injection of air into a water pool. A strong
correlation between turbulence and interface deformations was
found. In more recent works, Toutant et al. (2007) investigated
by DNS the motion of a strongly deformable bubble without rup-
tures in a spatially decaying turbulence in order to perform a priori
filtering for LES modelling of interfacial two-phase flows. Liovic
and Lakehal (2007b) develop a new strategy around the LES simu-
lation of interfacial flows based on a multi-physics treatment in the
vicinity of deformable gas-liquid interfaces. A reconstructed dis-
tance function is introduced, on which an interfacial shear velocity
is defined to be used in near-interface transport models. This
methodology (Liovic and Lakehal, 2007b) has been applied for
the simulation of a wave breaking configuration.

The aim of the work presented in this paper is the study of the
evolution of an interface separating two immiscible fluids in a free
decaying turbulence. The interface appears to be widely deformed.
Both liquid and gas phases will be resolved with DNS and turbulent
statistics will be carried out on both phases as well as a detailed
spectrum analysis. In order to focus on interface-turbulence inter-
actions, it was decided to work with the same density and dynamic
viscosity for both fluids. This work is a first contribution in the
study of the interaction between an interface and turbulence when
the interface is widely deformed. Because of the complexity in the
topology of the interface (the aim is to mimic atomization process),
quantitative analysis is less obvious. This work is a first step in the
understanding of interface/turbulence interactions in complex sit-
uations (typically atomization) and not a global and exhaustive
study of interfacial multiphase flows.

In a first part governing equations are introduced. In a second
part numerical methods are presented. Then, in a third part, the
numerical simulations are analyzed. This part is divided into two
sections. The first one is about the single-phase simulation and
the validation of the DNS of the homogeneous isotropic turbulence
(HIT) flow. The second section is dedicated to the HIT flow in which
a sheet has been added. After having presented the numerical con-
figuration, the interface/turbulence mechanism is studied. Then 3D
energy spectra are performed and finally 2D energy spectra are
studied in planes parallel to the initial sheet.

2. Governing equations

The simulation of liquid-gas flows at moderate velocities is
under consideration assuming an isothermal behaviour. The
incompressible Navier-Stokes equations are used to model the
resulting two phase flow (Scardovelli and Zaleski, 1999)

pu+ (u-Vyu)=-Vp+V-D
V.-u=0

where p is the density, p the pressure, u the velocity vector,
D = u(Vu+ V'u) the viscous stress tensor for a Newtonian fluid
and p the dynamic viscosity. The boundary conditions at the inter-
face between two immiscible fluids are the continuity of the veloc-
ity components

[, =0 (2)

and the dynamic boundary conditions for the normal and tangential
stresses (Delhaye, 1974)

bl —n-[uD]; -n=o0K (3a)
t-[uD],-n=0 (3b)

where n and t are respectively the normal and the tangent vectors
to the interface. o is the surface tension coefficient and x the local
curvature of the interface. The brackets [u] for example stand for
the velocity jump across the interface.

3. Numerical methods
3.1. Navier-Stokes solver

Classical projection methods are performed to ensure the incom-
pressibility constraint (Chorin, 1968; Temam, 1969). The spatial dis-
cretization is based on staggered MAC (Harlow and Welsh, 1995)
uniform Cartesian grids for the velocity components, all others
quantities as density, pressure and level-set are cell-centered. The
convection terms in the momentum equations are approximated
in a conservative way with 5th order accurate WENO schemes
(Shu, 1997). This particular choice has been motivated by the
robustness and low numerical dissipation of such schemes to per-
form direct numerical simulations (Trontin et al., 2008). Time inte-
gration is performed with a 3rd order accurate TVD Runge-Kutta
scheme. It should be pointed that the incompressibility constraint
is enforced at each Runge-Kutta sub-step. The Poisson equation
for the pressure is solved by a fast multigrid preconditioned conju-
gate gradient method (Tatebe, 1996; Trottenberg and Schuller,
2001).

3.2. Interface-capturing method

A level-set method (Osher and Sethian, 1988; Sussman et al.,
1994) is used to capture the interface, which is implicitely given
by the zero of the smooth function ¢(x,t). By convention, the le-
vel-set function ¢ will be taken positive in the liquid and negative
in the gas and the normal n will point towards the positive values
of ¢. Moreover, ¢ is imposed to be the signed distance function to
the interface. This particular property of the level-set function is of
major importance. Indeed, this property ensures the level-set to be
well behaved at the interface between the two fluids. The evolution
of the interface is implicitely captured by the zero-level of ¢ which
obeys the following equation

b+ - V)p=0 (4)

As for the momentum equation, the level-set equation is solved
by a 5th order conservative WENO scheme for spatial discretization
and a 3rd order TVD Runge-Kutta scheme. While Eq. (4) will move
the level-set ¢ = 0 at the correct velocity, ¢ will no longer remain a
distance function (|V¢| # 1). This can lead to large mass losses or
gains as the interface will behave poorly. Consequently, the level-
set must be regularly reinitialized to overcome this drawback. This
is achieved by solving to the steady state the following Hamilton-
Jacobi equation for ¢ (Sussman et al., 1994; Jiang and Peng, 2000)

¢(X7.V7O) = ¢O(x7y)
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Eq. (5) has the property that ¢ remains unchanged at the interface,
then the zero of the level-set ¢g and ¢ are the same and the steady
state solution of (5) verifies |[V¢|=1 . The Eq. (5) is solved by a
Godunov type scheme with a fifth order WENO scheme. As a dis-
tance level-set is sought only in the vicinity of the interface, few
pseudo time steps are needed to reach a distance level-set again.

3.3. Ghost fluid approach for the jump conditions

The jump conditions for pressure and pressure gradient in the
Poisson pressure equation as well as jump condition for the viscous
terms are taken into account by the ghost fluid method (Fedkiw
et al., 2000). The full mathematical details of this method can be
found in Couderc (2007). The authors have validated the numerical
methods in Trontin et al. (2008).

4. Numerical simulation

To understand the interaction between small scales of turbu-
lence and an interface, the classical configuration of homogeneous
isotropic turbulence (HIT) is chosen. In any direct numerical simu-
lation of turbulent flows, adequate resolution of the smallest spa-
tial scales is of primary importance. Here, different length scales
as well as statistical parameters are calculated to assess the reli-
ability of the simulation.

4.1. Homogeneous isotropic turbulence simulation: single-phase case

The computational domain is a 2m square box with periodic
boundary conditions on each side. The spatial grid resolution is
5123. The time step corresponds to & of the Kolmogorov time scale.
Simulations are performed at low Reynolds numbers. Parameters
given by Mansour and Wray (1994) are chosen to initiate the HIT
field. This field is generated in Fourier space: it fulfills the con-
straint of incompressibility and follows a prescribed energy spec-
trum. A complete description of the method to initiate an HIT
field can be found in Rogallo (1981). The initial energy spectral
density (energy spectrum) is given by

?o1 o, 7 (kY
P

where k, is the wave number for which E(k) is maximum, y and r
are parameters, and

A= /m K exp(—7k/2) dk
0

Here, r*=3, y=4 and k, =9. All the parameters of the calculation
are summarized in Table 1. The turbulent kinetic energy (herein
after TKE) q

1 2 2 2
q= N Z 0.5(ui;," + Viji” +wWij)
ik
is defined as the half trace of the Reynolds stress tensor. The turbu-
lent velocity scale is then defined by v’ = Vu? =, /2q. The statisti-

cal averaging — is approximated here by volume averaging. Time
evolution of TKE q is represented in Fig. 1. Comparisons are carried
out between our 5123 DNS code and a 1283 DNS spectral code. It can
be seen that 5123 resolution gives the same accuracy than 128>

Table 1
Parameters of the initial turbulence.
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Fig. 1. Time evolution of turbulent kinetic energy.

spectral DNS (which is already well resolved). It can be concluded
that the 5123 simulation is a DNS. In Fig. 2 the normalized TKE dis-
sipation rate € increases at early stages from - =0 to 1. T, is the
Eulerian time scale or eddy turnover time based on large scales of
turbulence. As observed by Yu et al. (2005), this increase ofé is con-
sistent with known turbulence physics: at early stages the energy
spreads to higher wave numbers due to the nonlinear cascade pro-
cess. This phenomenon leads to the increase of the dissipation rate
in physical space, as shown in Fig. 2. For later times (after one eddy
turnover time here), the dissipation decays monotonically. Once
again, a comparison between our 5123 DNS code and a 128> DNS
spectral code is performed showing an accuracy of the 5123 DNS
comparable to the spectral simulation. In Fig. 2, the budget
€= —% is satisfied indicating the good resolution of the computa-
tion. In Fig. 3, the ratio 4/ % is plotted and is —1.57. In the case
of large Reynolds numbers simulation, this constant is supposed
to be —1.96. The difference is due to our direct simulations where
Reynolds numbers are moderate. Higher order moments can be cal-
culated to measure the turbulence evolution from t = 0. Skewness
and flatness factors (Pope (2000)) are represented in Fig. 4. They
respectively represent 3th and 4th order moments of spatial deriv-
atives of u'. S and F measure the gap between the calculated spatial
derivatives of u" and a Gaussian repartition of these derivatives. S
and F are given by

-3 /)
3\ 0%; OXi
4 [/ aN2 (7)
SOV
3\ 0x; OXi
Several experimental studies (Mills et al., 1958; Smith and Rey-
nolds, 1992) have shown that

-05<S5<-04 3
33<F<4 ®)
when turbulence is fully established. In this work, Fig. 4 shows that
after three eddy turnover times, the turbulence can be considered
as fully established. If R; is referred to as the Reynolds number
based on /, the Taylor micro-scale, Mansour and Wray (1994) have
shown that the skewness factor collapses for very small R; (about 5
for this configuration). To avoid this collapse, numerical simulations
are stopped in the rest of the work at a final time which ensures that
R, = 10.

Concerning the DNS spatial resolution, good resolution of the
smallest scales is needed to avoid energy pile-up at high wave
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numbers. Theoretically, the numerical cut-off wave number is
given by kpa, = 7(f = 1), where #; is the Kolmogorov length
scale, ky,ax is the highest simulated wave number and Ax is the grid
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Fig. 6. Time evolution of turbulent length scales.

size. However, kmax/x ~ 1.5 is generally used as a necessary condi-
tion for DNS resolution (Yeung and Pope, 1988). It could be shown
that kpax i >  with 5123 grid points for initial conditions given by
(6). In Fig. 5, 3D energy spectra are plotted for two different times.
Comparisons are made between the 1283 spectral code and our
5123 DNS code. Every turbulent scale is accurately captured by
the 5123 DNS, even for the smallest scales (high wave numbers),
showing 5123 resolution is accurate enough for this simulation.
Fig. 6 shows the time evolution of the turbulence length scales.
Every length scale increases in time. At the end of the simulation
ib =7, where L, and Ly are respectively the box size and the Eulerian
longltudmal 1ntegral length scale. According to Boughanem and
Trouvé (1996), & i> 8 is needed to ensure the decorrelation of the
velocity field with the box length scale. Such a condition is re-
spected for £ < 32 as shown in Fig. 6. In this figure, the Howarth
and Karman relation (Howarth and Karman, 1938) between Ly

and L, is well observed (ti = 2) where L, is the Eulerian transversal
integral length scale.

4.2. Sheet in a HIT flow: interface-turbulence interaction

4.2.1. Configuration

As shown in Fig. 7, a thin plane layer (or sheet hereafter) is
added in the HIT field generated from the energy spectrum given
by Eq. (6). The sheet is represented by the fluid 2 in Fig. 7. Its
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' ~ »>0
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Fig. 7. Layer (or sheet) in a HIT flow: initial configuration. Periodic boundary
conditions are enforced in the three directions. Fluid 1 is represented by ¢ > 0 and
fluid 2 by ¢ <0. At t=0, the two fluids 1 and 2 are separated by two planar
interfaces ¢ = 0.

thickness ¢ is 5 % of the box size and compared to the Kolmogorov
spatial scale, % = 24. The sheet is the set of points x such as ¢

(x) <0. Up and down the sheet, the fluid 1 is characterized by the
set of points X such as ¢(x) > 0. The iso-surface ¢ = 0 is the interface
between the two fluids. Periodic boundary conditions are enforced
on the whole computational domain. Therefore, the initial config-
uration is a thin plane layer or sheet (such as ¢(x) <0, i.e. fluid 2)
inside the fluid 1 (such as ¢(x > 0). Turbulence is generated is the
whole computational domain, both in the fluid 1 and in the fluid
2. Initially plane, the sheet follows the motion of the surrounding
turbulent flow. The aim of this work is the study of the interaction
between turbulence and capillary forces without any other influ-
ence such as gravity forces or other volumic forces. Indeed, the re-
sults presented here will be used to perform a priori filtering for
LES simulation of air-blasted atomization where gravity could be
completely neglected. Moreover, viscous and density jumps are

i p(¢<0) H(p<0) -
not taken into account, so that o = 1 and oo = 1. A paramet
ric study is performed on the surface tension coefficient . The
dimensionless relevant number is the Weber number comparing

the fluid inertia to its surface tension force. It is given by
:pugo' ———

We 2, where uj = u’z(t)[:0 is the initial turbulent velocity
and ¢ is the thickness of the sheet. The sheet in the HIT field was
studied for different W, values: 110, 63, 19, 2 and 0.2. The refer-
ence case is the HIT flow with no interface. It is equivalent to a
sheet where ¢ = 0. In this configuration, the sheet just behaves like
a Lagrangian marker. That is why the reference case will be re-
ferred to as W, = co.

4.2.2. Interaction mechanism and turbulent statistics

4.2.2.1. Qualitative overview. We first consider the interaction
mechanism with respect to the topological changes of the interface
between the two phases. They are represented in Fig. 8 for four dif-
ferent initial W, and at three different times. For high W, numbers
(small surface tension forces) the interface is widely stretched by
the surrounding turbulence. Filaments and small structures ap-
pear. When time increases, these structures become bigger and
their shapes tend to be spherical. This is due to capillary forces
which become more important as time increases. Indeed, as local
curvatures of the sheet increase (compared to the initial flat config-
uration of the interface), surface tension forces increase as well. For
the lowest W, number (high surface tension forces), however, the
initial planar sheet is only slightly disturbed. In this case, no tear-
ing or stretching of the interface is observed. It could be thought
that the interface behaves as a solid wall. From these qualitative

results, it can be shown that highest Weber numbers produce
small droplets, which is consistent with earlier formation of very
thin ligaments whereas lowest ones keep the sheet nearly plane,
indicating some critical Weber number under which no fragmenta-
tion occurs. This critical Weber numbers lies between 0.2 and 2.

4.2.2.2. PDF of droplets distribution. As the interface topology of the
highest Weber numbers is finely grained, one could ask if the sim-
ulation is real DNS with respect to the interface. To deal with, in
Figs. 9-11, the PDFs of the number of droplets vs. D/Ax are plotted
for three different W, numbers at different times, where D is the
diameter of the droplet and Ax the spatial step. Practically, this
diameter is calculated by D = (8%)"*, where V is the volume of each
blob detected by a geodesic reconstruction algorithm (Serra, 1983).
In Figs. 9-11, a zoom is performed for 50 < D/Ax < 250 and the re-
sult is shown in the right up corner of the figure. For early times (t/
T. <5) and for W,=110 and W, =19 (Figs. 9 and 10), the PDFs
show a maximum for 1 < D/Ax < 20, indicating a strong fragmen-
tation of the sheet due to ligament break-up. However, as de-
scribed in the zoom of Figs. 9 and 10, the single path-connected
component of the sheet is still present for this time. Its equivalent
diameter decreases from 234 to 230 for W, =110 and from 234 to
220 for W, = 19. For later times, coalescence happens as shown in
Figs. 9 and 10. For these Weber numbers, the largest number of
droplets is observed for D/Ax = 10 at t/T. = 13, instead of D/Ax =3
at t/T,=5 for W, =110 and D/Ax =7 at t/T,=5 for W, =19. For t/
T. > 13, PDFs do not evolve anymore. For smaller W, (W, = 2), the
fragmentation process occurs but it does not result in a large dis-
tribution of smaller droplets. On the contrary, the main path-con-
nected component is divided in large drops. For this case,
coalescence appears later (t/T, =27) and is less significant. At this
time, three main drops are present (D/Ax =130, 160 and 180).

As can be seen in these Figs. 9-11, two distinct behaviours are
observed with a PDF centered at D/Ax = 10 for larger W,, whereas
only three main drops are shown for W, = 2. For the larger Weber
numbers (W, > 19) and from t/T, > 13, we have D/Ax > 5 for the
wide majority of the droplets, indicating the good spatial resolu-
tion of the droplets and the reliability of the DNS simulations.

4.2.2.3. Energy budget. To understand the role played by surface
tension forces in the TKE evolution, an energy budget for TKE
(written q in Eq. (9)) is carried out. To do this, a new spatial average
conditioned by the level-set function ¢ is introduced. It will be
noted —¢ in reference to the conditioning parameter ¢. Details
on the computation of —¢ are given in Fig. 12. Let ¢; be an iso-
surface. The points x of the numerical domain 2 such as ¢(x) €
[#1; p1+do] (p(X) is the level-set function at x) belong to a layer
C; centered around ¢; whose width is d¢. The average —*¢(¢) is
performed among the points which belong to C;. In our computa-
tions, d¢ is of the order of the spatial step.

Thus, using the —¢ average, the equation for the energy budget
can be written:

ey ¢ ¢ ¢

Ol 0 0 0 s

4 +u,-—q_ =~ (Quusy) ——(py;) —2usSy + puiki 9)
ot OX; OX; OX; ——— ——

I 1 1l v v v

where term I is the time rate-of-change, term Il is the power of vis-
cous forces, term III is the transport of ¢, term IV is the power of
pressure forces, term V is the dissipation and term VI is the power
of interfacial forces F. Here, F is given by F = 6xd(¢)V ¢. In Fig. 13,
the different terms of the Eq. (9) are represented vs. time. At each
time, the budget is performed on the interface (¢ = 0). For example,

—#=0
term I in Fig. 13 is 9= (t). Every term is normalized with e(t). A
comparison is performed for different W, numbers. Three kinds of
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We=02, £ =5 We=02, £ =13 We=02, £ =27

Fig. 8. Liquid sheet represented for four different initial W, numbers and at three different times.

behaviours can be seen in Fig. 13: the small interfacial scale cases is term V (dissipation) but %| o0 ™ —€lyo (or term I # term V),
(W, =110, 63, 19), the large interfacial scale case (W,=0.2) and indicating a loss of isotropy at the interface. In Fig. 14, the same
the transitional one (W, = 2). budget is carried out for W,=110 far from the interface (¢/

The small interfacial scale cases are related to W, =110, 63 and Ax =5). Far from the interface, the relation 2 = —¢ is verified. This
19 (Fig. 13a-c respectively) where the interfaces present large result is the same for every W, far from the interface. The transport
deformations with small interfacial scales. The predominant scale term (III) has a symmetric behaviour compared to the pressure
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the two fluids is represented by the iso-surface ¢ = 0.

term (IV). The two terms are not exactely balanced but have
similar behaviours. Back to Fig. 13 for W, =110, 63 and 19, term
Il and term IV have similar behaviours but the magnitude of term
IV is stronger than the magnitude of term III resulting in
g—‘g b0~ €|y—o- The interfacial term (VI) is low. Term VI =
uok||V¢|. As can be seen in Fig. 8, x can be very large. However,
Ow,-11063.10 < 1 and therefore the product ox is low for
W, =110,63 and 19, which explains the low magnitude for term
(VI). The strength of interfacial forces is driven by the surface
tension coefficient ¢ more than the curvature «.

The large interfacial scale case is related to W, =0.2 (Fig. 13e
and f), where the interface remains nearly flat. The previous
similitude between the transport term (III) and the pressure term
(IV) is not true anymore for W, = 0.2. For t/T, > 15, the two predo-
minent terms are the pressure term (IV) and the interfacial term
(VI). Their evolutions are comparable and oscillate under a
frequency which is consistant with analysis of surface waves given
byLamb (1932):

1 [ok®
flamb:ﬁ ﬁ (10)

The frequency deduced from Fourier analysis of temporal signal of
interfacial energy budget term of Eq. (9), gives a wave length of
interfacial instablity of roughly n/2 which seems to be in good
agreement with waves observed in Fig. 8. Therefore, waves ob-
served for W, = 0.2 in Fig. 8 are surface waves. Pressure and interfa-
cial terms (IV and V) oscillate with the same characteristic
frequency given by surface waves on the interface (W, = 0.2). About
the product ok, o is predominant on k. Indeed, xk < 1 (nearly flat
interface) whereas ¢ > 1 for W, =0.2. As can be seen in Fig. 13,
the interfacial term VI is high and this is due to high .

The transitional case is W,=2 (Fig. 13d). For small times,
(t/T, < 15), conclusions are the same as for the small interfacial
scale cases (W,=110, 63 and 19). For larger times (t/T. > 15),
the interfacial term (VI) increases for 15 < t/T, <30. Back to
Fig. 8, the curvatures of the large drops do not increase signifi-
cantly enough from t/T, = 15 to t/T, = 30 to raise the term VI. The
large drops oscillate from t/T. = 15 to t/T, = 30 under the competi-
tion of two contributions: turbulence which imposes deformations
to the interface and surface tension forces which play the role of a
restoring force. These oscillations cause increases of local velocities
near the interface inducing the increase of the term VI on the inter-
face. Viscosity damps oscillations: as turbulence intensity decays
in time, the drops keep their spherical shapes and local velocities
in the neighbourhood of the interface decrease, which explains
the decrease of the term VI from t/T. = 30. Note that dissipation
(term V) is larger than for other W..
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4.2.2.4. Temporal evolution of TKE: W, influence. In Fig. 15, the time
evolution of normalized TKE (q — q..)/q- is represented for differ-
ent W, numbers. q., is the TKE of the reference case (¢ = 0).
Atearly stages of the simulations (t/T. < 6), (@ — q..)/q~ < 0 forall
Weber numbers showing that TKE decreases faster when W, < co.
This decrease is greater as the surface tension coefficient increases.
TKE is transfered from the fluid flow to the interface. Energy is used
to break the interface into smaller pieces. For W, = 0.2 where ¢ is
high enough to prevent the interface from breaking, energy is used
from TKE to cause deformations of the interface with surface waves.

For later times, (q — 4..)/q- increases for all W, numbers. Three
different behaviours can be observed: small scale cases (W, =110,
63, 19), large scale scales (W.=0.2) and the transitional case
(W, =2).

e For small scale cases (W, =110, 63, 19) (¢ — q..)/q- increases
but remains negative. The interface is finely grained, consisting
of small filaments and droplets (Fig. 8), where the interfacial
energy is used for coalescence and creation of larger interfacial
structures. Even for later times, (q — ¢..)/d-. remains negative
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(9-q_)/q,,

Fig. 15. Time evolution of turbulent kinetic energy (TKE) for different We. q.,. is TKE
for W, = oo.

showing a loss for TKE compared to single-phase case (W, = o).
In that cases, at large times, coalescence and break-up are
important (see Fig. 8), which explains TKE loss for two-phase
interactions.

For the transitional case (W,=2), q — q.. becomes positive

(ﬁ > 7). Unlike previous cases, large non spherical blobs are

observed. Under surface tension forces these blobs keep oscil-
lating without merging throughout the simulation. In this case
the distance in between is significantly larger than for
W, > 19. These oscillations explain the increase of (q — q..)/
(s aS (., vanishes up to t/T,=30. For t/T, = 30, (@ — q-.)/qs
decreases. It can be explained back to Fig. 13 where it was
shown that large drops stop oscillating from ¢t/T, = 30.

For the large scale case (W,=0.2), ¢ — q. become positive

Te
remains unbroken and is only disturbed by surface waves.
These surface waves are a gain for TKE but are damped by
viscosity. Therefore, for large times, q — q., decreases. As (..
decreases too, the ratio (q — q..)/q.. shows a stage for W, =0.2
at large times.

(L > 6). Due to high surface tension coefficient, the sheet

4.2.2.5. Turbulent statistics. In Fig. 16 and 17, normal and tangential
Reynolds stress profiles are represented vs. % where ¢ is the level-
set function (signed distance function to the interface) and ¢ is the
initial thickness of the sheet. More precisely, if n and t are respec-
tively the local unit normal and tangential vectors, and if v/, and v/,
are given by
/ /

moen an
u,=u-1
thenFigs. 16 and 17 represent respectively ﬂd’ (¢) and u_;zd) (¢).Using ¢
enables representing Reynolds stress profiles in function of the signed
distance to the interface. u_;fdJ (¢) and u_'T2¢ (¢) are normalized by their
respective averaged values far from the interface £ > 1. In Figs. 16
and 17 oscillations appear far from the interface. A way to improve
the resolution is the use of ensemble averaging in addition to the spa-
tial averaging. To do this, each realization has to be produced by run-
ning the simulation under the same flow parameters but with
different initial conditions. Because of prohibitive CPU times with
5123 grids, such ensemble averagings have not been performed.

Figs. 16 and 17 show two main trends. At short times (- < 2
for0 <2< 1¢a loss for ﬂ‘p can be seen near the interface whereas
a gain for u”?" occurs. Every W, number is concerned by this phe-
nomenon. Near the interface a transfer of energy happens from
u?" to u2”. Perot and Moin (1995) study turbulence in the pres-
ence of different boundary conditions (idealized permeable wall,
idealized free surface, solid wall) to highlight the effects of wall
blocking and the role of splat events. According to Perot and Moin
(1995), intercomponent energy transfers are due to an imbalance
between splat and antisplat events. For Perot and Moin (1995), this
imbalance is controlled by viscosity. According to Walker et al.
(1996), this imbalance is the consequence of both the blocking ef-
fect of the interface and a return-to-isotropy phenomenon to re-
duce anisotropy due to the interface. In the case of an ideal free
surface, Perot and Moin (1995) show a local increase for u_'rzd’ and
a decrease for u?(/’ near the free surface. In Figs. 16 and 17 the same
mechanism is observed for T—‘e < 2. Therefore for early times, anisot-
ropy spreads around the interface on a thickness of 6 and the en-
ergy transfer from turbulence to the interface induces anisotropy
in the vicinity of the interface.

At larger times (TL > 5), except for W, =2 and W, =0.2, both

—t s . Lo
u?” and u2” decrease near the interface. The previous intercompo-

nent energy transfer from u_;12¢ to u_?(b due to the presence of the
interface is not observed any more. W, = 2 appears to be a transi-
tional case from the previous conclusions. Large spherical blobs
keep oscillating under surface tension forces without merging. In

this case, for larger times (T—‘E > 5). the interface behaves like a

generator for turbulence imposing local increase for both ﬁ‘b
and uTZ(/’ near the interface (Figs. 16 and 17). For W, = 0.2, at larger
times (TL > 5), a decrease of u?d) is observed near the interface

(¢ < 2) whereas the tangential Reynolds stresses uTZd’ increase.
Looking back at Fig. 8 the sheet remains unbroken and is only dis-
turbed by surface waves for W, = 0.2. The topological configuration
of the sheet is similar to a free plane surface. In Perot and Moin

(1995) the study of turbulence interacting with an ideal free plane
surface concludes with the local increase of uTqu and decrease of

qud’ near the free surface. Therefore an analogy between the sheet
and an ideal free plane surface can be done in the case of small W,
numbers at large times.

In Fig. 18, vorticity intensity Q, is represented as a function of ¢,
the signed distance function. 4(¢) have to be understood as follows:

2,(0) = Ve (12)
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where Q =V Au. Q, is normalized by its value far from the inter-
face. In all cases vorticity is generated near the interface (< 1).
Vorticity is generated quickly and its spreading remains close to
the interface (in a zone from 0 to ¢ around the interface) even for
large times. The magnitude of the vorticity peak increases in time
and is maximum for W, = 2 which corresponds to the transitional
case (see Fig. 8). This vorticity peak is the result of the interface/tur-
bulence interaction.

In this study, it was shown that the interface/turbulence
interaction causes anisotropy in the vicinity of the interface. This

anisotropy has a universal behaviour for every W, number at
early stages when an energy transfer from turbulence to the
interface occurs. Normal Reynolds stresses decrease whereas tan-
gential ones increase. At larger times, less obvious conclusions
about the behaviour of both normal and tangential Reynolds
stresses can be drawn. This local anisotropy will have to be ta-
ken into consideration when developing LES models for subgrid
scale terms deriving from the interface/turbulence interaction.
For such models, the isotropy hypothesis cannot be assumed
anymore.
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4.2.3. 3D energy spectra

In this section, a spectral analysis is carried out to identify the
scales where the interface/turbulence coupling appears. 3D energy
spectra are plotted and results are summarized in Fig. 19. For five
W, numbers, energy spectra are compared with the reference case
W, = co. Comparisons are performed for different Tie (from 3 to 30).
In the dimensionless wavenumber k#, the Kolmogorov length scale
7 is the one of the single-phase configuration chosen at t/T, = 3 for
every time. At early stages, when £ < 3, spectral behaviours for

single- and two-phase cases are nearly the same. However, for la-
ter times, clear differences can be observed. Energy contained at
small turbulent scales (high wave numbers k# > 0.2) is higher than
for W, = 0o (single-phase case). Therefore the interface appears to
be an energy generator for the small scales of turbulence. This en-
ergy gain which is spectrally limited to the highest wavenumbers
is the result of an energy transfer. To quantify this energy redistri-
bution, a kinetic energy budget is carried out. To set notations, a
diagram is drawn in Fig. 20 to summarize configurations shown



902

in Fig. 19. In Fig. 20 two 3D energy spectra are plotted. The first one
corresponds to the reference case (W, = oo) whereas the other one
is drawn for (W, < co). kmax is the maximum wave number simu-
lated, while k. (W,) is the wave number at which the intersection
between the two spectra occurs. Wave number k. depends on
W.. The energy contained in the large scales of turbulence is given
by calculating I; = f(;“ E(k)dk. The energy contained in the small
ones is given by I, = f,fc'““ E(k)dk. The total TKE is given by

vorticity

vorticity

vorticity

P. Trontin et al./International Journal of Multiphase Flow 36 (2010) 891-907

— t/Te=2
-- t/Te=5
= t/Te=9
— t/Te=13
— t/Te=23

vorticity

0.8
0.7 L 1 L 1 1
0 1 2 3
/0
(a): W, = 110
L6 . : . : . .
1.4 4
] — t/Te=2
-- t/Te=5
= t/Te=9
1.2 — t/Te=13
— t/Te=23

vorticity

0 I 2
/8
(¢):W. =19
; , ; , ;
2.5
2_
15

I; = fé‘"‘“ E(k)dk. Results are given in Table 2. In this table € means
that the magnitude was too low to be considered as significant.
Symbol § means it was not possible to determine a single value
for k. and then to perform an accurate budget between small and
large scales. For every time and for every W, < oo, energy [, is lower
than for W, = co (single-phase). Therefore the interface damps TKE
deriving from the larger scales (low wavenumbers). The damping
is stronger as the surface tension coefficient is higher (low W,
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Fig. 18. Vorticity vs. ¢ for different W, at different .
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number). Concerning small turbulent scales, energy I, is higher for
every W, < oo than for W, = oo, indicating the interface plays a gen-
erator role for the smallest turbulent scales. Therefore there is an
energy transfer from the turbulent largest scales to the smallest
ones for W, < co. Except for W, =2 at large times, I3 is lower for
W, < oo than for W, = co. So the damping of the largest scales is
more important than the increase of the smallest ones resulting
in a global decrease of the TKE due to surface tension forces. For
W, =2 at large times, the global increase of the TKE has been pre-
viously explained. Referring back to Fig. 19 the energy transfer

from the largest to the smallest turbulent scales is all the more sig-
nificant as £ is high. The transfer is effective from - > 3 at a time
when the mterface/turbulence interaction is 51gn1ﬁcant For
7. € [0;3] the interface has no impact on the spectral distribution
of the turbulent energy.

In the case of large W, where the interface is finely grained at
large times (t/T, > 13), the droplet size distribution is correlated
with the local TKE increase for the small scales. Back to Fig. 9
and 10 for W, =110 and W, =19, the wide majority of droplets
have their diameters D such as D/Ax < 30, which corresponds to
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Fig. 20. Synthesis scheme of the configurations in Fig. 19.

0.23 < k#r,—3. In Fig. 19, it can be seen that scales for which TKE
increases are such as kn,,;,_; > 0.2. Therefore, for the cases where
the interface is finely grained (W,.=110, 63 and 19), the energy
transfer occurs at the typical scales given by the droplets where
the interface/turbulence energy transfers are predominant.

The energy transfer has to be taken into consideration in the
development of future LES models. The subgrid contribution of
the interface/turbulence coupling is an increase of the TKE budget
deriving from the smallest scales. A first step is the validation of
existing LES models concerning the treatment of the subgrid con-
tribution of interface/turbulence coupling.

4.2.4. Distance to the interface and 2D energy spectra

The energy transfer from the large turbulent scales to the small
ones has been previously established for the whole computational
domain. Now the distance to the interface is taken into account. To
do that, the computational box is divided into 10 planes which are
parallel to the initial sheet. e, is the normal unit vector to the 10
planes. Let «(z) be the density function of the phase ¢ <0 at
z=2z. 1f a(z) = 0 then the plane z = Z is totally outside the sheet.
If a(z) = 1 then the plane z = Z is totally inside the sheet. And if
0 < a(z) < 1 then the plane z = Z crosses the interface. In Fig. 21,
a(z) is represented vs. z/L, for different W, numbers and at
Tie: 13. The initial sheet (at t=0) spreads from z=—0.025L, to
z=+0.025L,. In Fig. 21, the positions of the 10 planes are repre-
sented too. Because of obvious symmetries only the planes 1-5 will
be studied. Conclusions are similar for planes from 6 to 10. The
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Fig. 21. «(z) vs. z[Ly. Ly is the box size. £ =13.

plane 1 is the farthest plane from the interface. The plane 5 is
the nearest one. As can be seen in Fig. 21, whatever the Weber
number is, the two first planes (planes 1 and 2) never cross the
interface. The planes 3 and 4 cross the interface for W, =110, 63
and 19. For W, =2, the only plane which crosses the interface is
the plane 5 and the other planes are all out of the sheet. For
W=0.2 none of the planes crosses the interface. Because of a
strong surface tension coefficient, the sheet has little deformations
and the interface is parallel to every planes.

In Fig. 22, 2D energy spectra are plotted for different W, at
7. = 13. Two dimensional spectra are performed in planes 1-5.
The closer to the interface spectra are performed, the higher the
energy of small scales is. The energy transfer from the larger turbu-
lent scales to the smaller ones is stronger as one moves towards
the interface. For W, = 110, 63 and 19, planes 4 and 5 are the planes
where the energy transfer is the strongest. For these W, numbers,
o= 0.1 for plane 4 and « = 0.16 for plane 5 (Fig. 21). Therefore, in
these two planes, both phases ¢ <0 and ¢ > 0 are found and inter-
actions are strong via the interface. In Fig. 22, for W, = 2, the energy
transfer between large and small scales is significant only in the
plane 5. Once again, this is consistent with Fig. 21 where the plane

Table 2
Energy repartition between small and large scales of turbulence for different W, numbers at different times.

T We L = [ E(k)dk I = [i E(k)dk Is = [ E(k)dk E £

3 00 6.03 x 103 1.00 x 10 6.04 x 103 0.998 0.002
110 5.96 x 107> 1.00 x 10 5.97 x 103 0.998 0.002
63 591 x 1073 1.00 x 10~ 592 x 103 0.998 0.002
19 572 x 1073 6.00 x 10~° 578 x 103 0.990 0.01
2 5.66 x 1073 6.00 x 10°° 572 x 1073 0.990 0.01

6 IS 1.75 x 1073 € 1.75 x 103 1-¢ €
110 1.70 x 1073 1.00 x 10> 1.71 x 1073 0.994 0.006
63 1.67 x 1073 1.00 x 10° 1.68 x 1073 0.994 0.006
19 1.61x 1073 4.00 x 10> 1.65 x 1073 0.976 0.024
2 1.65 x 1073 8.00 x 10°° 173 x 1073 0.954 0.046

13 o0 475 x 104 3.00 x 10 4.78 x 1074 0.994 0.006
110 4.54 x 104 4.00 x 1076 4.58 x 1074 0.991 0.009
63 448 x 1074 6.00 x 107 454 x 1074 0.987 0.013
19 436 x 1074 1.8x107° 454 x 1074 0.960 0.04
2 0 0 513 x 1074 0 0

20 0 229 x 107 2.00 x 107 231 %104 0.991 0.009
110 217 x 1074 3.00 x 10°° 220x10°* 0.986 0.014
63 214x10°* 5.00 x 10°° 219 x 104 0.977 0.023
19 211x107* 1.10 x 10~ 222 %1074 0.95 0.05
2 0 0 2.85x 104 0 0
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5 is the only plane which crosses the interface. In Fig. 22, the same
conclusions can be drawn for W, = 0.2: none of the planes crosses
the interface and therefore the energy transfer between large and
small scales is not observed. For W, = 0.2, even plane 5 is too far
from the interface, and the interface/turbulence interaction is
really restricted to a thin area around ¢ =0. Fig. 22 shows that
the energy transfer from the large to the small scales is spatially
limited to the vicinity of the interface.

The spectral spreading of the energy transfer is now investi-

E(k,We=19.1)
E(k,We=o0,1)

numbers k and different times. W, = 19 is chosen to carry out the
study and similar conclusions could be drawn for the other W,

gated. To do so, the ratio is performed for several wave

E(K)we—1
E(k)w,

(for kny > 1.5) and only the smallest scales of turbulence get energy
from the energy transfer previously explained. For later times

numbers. In Fig. 23, for £ =5, > 1 for high wave numbers
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Fig. 22. 2D energy spectra. Planar splitting. Ti =13.
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Fig. 23. i((m;‘f at different .
[ E(R)we-19
(r_e =13 and 26>7 o > 1 for kn, > 1. Therefore larger and lar-

ger scales get energy in the transfer from large to small turbulent
scales indicating a spectral spreading of the energy transfer.

5. Conclusion

This work aimed at providing a first contribution to the under-
standing of the coupling between turbulence and capillary effects.
A decaying HIT flow was chosen to carry out this study. A first step
was to calibrate the HIT flow to get relevant statistics about isotropy,
length scales and turbulent parameters. Then, an initially plane
sheet was added in the computational domain and a parametric
study on the surface tension coefficient (Weber number) was carried
out. For the first time, DNS results have been obtained to point out
anisotropic interaction between turbulence and an interface with
wide deformations. From a qualitative point of view, two types of
turbulence/interface interactions have been observed with a transi-
tional case. For large W, numbers, the interface is torn off under iner-
tial forces. The interface is finely grained and in this case, the energy
transfer from turbulence to the interface is used for the coalescence
of small droplets into larger drops under surface tension forces. For
large W, at early times, an increase of the tangential Reynolds stres-
ses is observed near the interface whereas the normal ones decrease.
For later times, both normal and tangential Reynolds stresses de-
crease. An energy transfer from the large scales to the small ones
is noticed. This transfer is predominant in the vicinity of the inter-
face and driven by the scales of the small droplets. As W, decreases,
atransitional case has been observed whichs still grained. Drops are
large enough to be independant from the other neighbouring drop-
lets. In this case, the interfacial energy initially involved by the tur-
bulent flow is given back to the fluid surrounding the interface and
amplified by the surface tension forces. For lower W, numbers, the
interface remains flat and oscillates under surface waves. The char-
acteristic frequency of surface waves is observed in the TKE budget.
For every W, number, anisotropy and vorticity appear in the vicinity
of the interface resulting from the turbulence/interface interaction.
For the development of LES two-phase flow models, this work will
continue recent works of Labourasse et al. (2007), Liovic and Lakehal
(2007b), Vincent et al. (2008) and will allow the development of sub-
grid scale models which will take into account the coupling between
surface tension forces and turbulence.
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